

Successful Next Generation Low NO_X Burner Retrofit Project in a Northern California Refinery

Callidus Technologies LLC

Successful Next Generation Low NO_X Burner Retrofit Project in a Northern California Refinery

- Northern California Goals:
 - January 1994 Rules Laid Down: Meet 0.033 #/MMBtu
 - 50% of total fire duty by July 2000
 - 100% of total fire duty by July 2002
 - 8 year program
- Texas Goals:
 - December 2002 Rules Laid Down: Meet 0.25 to 0.36 #/MMBtu
 - 35% by April 2004
 - 60% by April 2005
 - 70% by April 2006
 - +80% by April 2007
 - 5 year program

Burner Retrofit is Part of a Facility Wide NO_X Reduction Project

- Technologies Typically Considered for Petrochemical NO_X Reduction Include:
 - Next Generation Low NO_x Burner Retrofits
 - Steam Injection
 - External Flue Gas Recirculation (Burner Retrofit?)
 - Selective Catalytic Reduction (SCR)
 - Most Plans Combine Technologies

Keys to a Successful NO_X Reduction Project

- Meets the Corporate Level Environmental and Production Long Range Operating Plan
- Is Delivered to Meet the Project Goals
 - On Time
 - On Budget
 - On Specification: NO_X Reduction Criteria w/o adversely affecting production
 - To the Satisfaction of the Customer (Operations)
- Planning is Required to Meet Goals
- Performance Review and Verification After Each Phase

The Plan for This Successful NO_X Reduction Project

- <u>Planning:</u> Outside Consultants Were Used to Target Heaters and Evaluate Technology Options.
- Specification: Achieve or Exceed an Average of 0.033 #/MMBTU (HHV) for All 30 Refinery Process Heaters and Boilers.

 Strategy: Select Heaters Having the Lowest Modification Cost Per Pound of NOX Removed. This Drives the Total Installed Cost of the Project to a Minimum and Provides "Most Bang for Your Buck."

The Plan for This Successful NO_X Reduction Project

- Specification Testing: Install Next Generation Burners on Some Heaters Early In the Program to Verify Technology, Budget, NO_X Reduction Estimates and Reduce Risk.
 - Risk Management
 - Front Load Projects
 - Allow Time for Testing of Newest Technology

 Specification: Allow Additional Development Time and Adjust the Schedule Accordingly to Meet Certain Extremely Demanding Heater Applications.

The Plan for This Successful NO_X Reduction Project

- Budget and Schedule: Complete All Modifications During Already Scheduled Maintenance Turnarounds, or On-line.
- <u>Customer Satisfaction:</u> Select and Install Reliable Equipment, That Does Not Affect Unit Operations or Capacity

 <u>Customer Satisfaction:</u> Perform All Work With Zero OSHA Recordable Accidents or Environmental Incidents.

Keys to a Successful Next Generation Low NO_X Burner Retrofit Project

- An Ideal Burner Retrofit Is Transparent to Operations
- Fits the Right Level of Technology to the Furnace.
- Does Not Affect Process Efficiency or Capacity.
- A Burner Retrofit Can Be Part of a Capacity Expansion, Debottlenecking, Capacity Expansion or Efficiency Improvement Project.

Keys to a Successful Next Generation Low NO_X Burner

Confirm Heater
Nameplate Capacity
Matches Reality

- Consider Heater
 Volume and Burner
 Spacing
- 400,000 Btu / Hr / Ft2
- 15,000 Btu / Hr / Ft3

 Computation Fluid Dynamic (CFD) Modeling

Keys to a Successful Next Generation Low NO_X Burner

- Seal Heaters to Eliminate "Tramp" Air in the Radiant and **Convection Sections**
 - Emissions, Efficiency, Controllability
- **Ensure All Air Control** Systems and Devices Are in Good Working Order
 - Stack Dampers, Air Registers, Fan Controls and Air **Preheaters**
 - Automate Air **Control Wherever** Possible

Keys to a Successful Next Generation Low NO_x Burner

- Establish a Clean, **Dry Fuel Source**
 - Small Gas Ports, Existing Debris in Pipe
- Confirm Burner Performance in Test Furnace and Field
- Partnership to Develop Technologies for **Difficult Applications**

Low NO_X Burner Technologies

- Fuel or Air Staging
- Internal Flue Gas Recirculation
- Steam Injection or Other Inert Gas Injection
- Lean Premix
 - Thorough Mixing of Fuel and Air
 - Keeps Combustion Lean at All Times
 - First Practical Patent Granted in 1995
 - Joint Development, Exxon, Callidus, GRI & TIAX (ADL)
- Advanced Combination of These Technologies is termed
 "Next Generation Low NOx"

Next Generation Low NO_X Burners

- The Burners Installed in California in 2002 Are Much More Advanced Than Those Installed in 1991.
- The Burners Installed in Texas in 2007 Will Be Much More Advanced Than Those We Installed in 2002.

- We Continuously Advance Burner Technology
- Partnerships With End Users Links Them to The Latest Technology

Next Generation Low NO_X Burners

- What They <u>ARE</u>
 - Advanced Applications and Combinations of Existing Technologies
 - Flame Is Rooted to Burner
 - Continuous, Connected, Well Defined Flame Pattern
 - Fuel and Air Are Deliberately Mixed Together

- What They ARE NOT
 - Tube Stabilized Combustion: Boundless, Undefined Flame
 - Highly Sensitive to Furnace Geometry
 - Test Furnace and Field Results Cannot Be Correlated
 - Deep Fuel and Air Staging
 - Fuel Incineration

Duty

40

20

31

239

175

175

MMBtu/hr lb/MMBtu

NOx

0.032

0.03

0.03

0.012

0.04

0.012

NOx

lb/hr

1.28

0.6

0.92

2.87

7

2.1

Delta NOx

lb/hr

0.51

0.47

0.25

1.04

144.67

43.34

Description

New LNB

New LNB

New LNB

New SCR

New LNB

New LNB &

New SCR

A

B

 \mathbf{C}

D

E

E

Cost

\$M/lb/hr

\$441

\$467

\$913

\$842

\$55

\$81

SAMPLE EVALUATION OF RETROFIT COST PER POUND OF

NOX REDUCED											
						Future	Future	Future	Baseline-	NOx	
T / NT	Option	Estimated	Baseline	Baseline	Baseline	Design	Design	Design	Normal	Reduction	

NOx

lb/hr

2.78

1.97

1.02

9.94

44.96

44.96

NOX REDUCED											
						Future	Future	Future	Baseline-	NOx	
Heater No.	Option	Estimated	Baseline	Baseline	Baseline	Design	Design	Design	Normal	Reducti	

NOx

0.168

0.125

0.122

0.109

0.333

0.333

Duty

16.6

15.8

8.3

91.2

135

135

MMBtu/hr lb/MMBtu

Cost

\$M

\$1,000

\$700

\$700

\$7,500

\$7,900

\$3,500

NOX REDUCED											
						Future	Future	Future	Baseline-	NOx	
leater No	Option	Estimated	Baseline	Baseline	Baseline	Design	Design	Design	Normal	Reducti	

Northern California Refinery NO_X Reduction Plan

Key Lessons Learned from Northern California Experience

- Plan! Organize Around That Plan
- Pick Strategies That Packs the Most Bang for the Buck
- Establish Measurable Specifications and Goals
 - Post Progress Toward Goals for All to See

- Select Technology Mix to Meet Your Needs
 - Develop Specific New Technologies When Needed
- Join in Performance Testing of New Technologies
 - Demand and Specify Exhaustive Testing Then Verify in Field

Front Load Projects With Riskier Applications